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Summary  
 
We delivered an exhaustive literature review of computationally relevant studies of high-level vision in 
the brain. We not only reviewed the major findings in the summary of our theory, but also delivered a 
binder that contains abstracts from the relevant research literature. This binder can serve as a guide for 
further research. 2) We conducted an analysis of the problems to be solved in each of the major 
processing phases in the brain during visual object identification (to further specify the nature of the 
processing subsystems that work together to identify objects and provide the information necessary for 
reaching and navigation). We focused on specifying the type of information that is sent, and on the 
circumstances in which specific contents (i.e., parameter values) must be specified. We have addressed 
this goal in two ways. First, we developed a qualitative theory of the processing subsystems and their 
interactions, which is summarized below. Second, we have built a computational model that embodies 
these ideas. In building this model, we focused on aspects of the empirical literature that—at first blush--
seemed inconsistent with our theory. Because this literature was exclusively in the realm of dissociations 
that occur following brain damage, we built the model so that we could "damage" it in various ways and 
observe its behavior in performing tasks that are analogous to those performed by the brain-damaged 
patients. A report of the model itself is provided after our qualitative summary. We also report work on 
early/intermediate vision, which is intended to supplement and complement our work on late visual 
processing. 3) We provide a written description of the systems we developed, which specifies in detail 
how the computer models were implemented. 4) We provide a description of our progress in testing the 
model. We also provide a summary of the progress made in the early/intermediate vision system. 5) 
Finally, we provide a commented version of the code itself, in case other groups want to build on what we 
started. As promised, the code was written so that it can be easily executed on most Unix-based machines.  
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1. Introduction: Overview of Objectives and Progress  
 
In this report we summarize how we have addressed each of the original objectives of the 

proposal, as noted in what follows: 
1) We intended to conduct an exhaustive literature review of computationally relevant studies of 

high-level vision in the brain. We have done so. We not only review the major findings in the summary of 
our theory (see below), but also deliver a binder that contains abstracts from the relevant research 
literature. This binder can serve as a guide for further research. 

2) We planned to conduct an analysis of the problems to be solved in each of the major 
processing phases in the brain during visual object identification (and to further specify the nature of the 
processing subsystems that work together to identify objects and provide the information necessary for 
reaching and navigation). We intended to focus on specifying the type of information that is sent, and on 
the circumstances in which specific contents (i.e., parameter values) must be specified. We have 
addressed this goal in two ways. First, we developed a qualitative theory of the processing subsystems 
and their interactions, which is summarized below. Second, we have built a computational model that 
embodies these ideas. In building this model, we first reviewed all of the literature that—at first blush--
seemed inconsistent with our theory. Because this literature was exclusively in the realm of dissociations 
that occur following brain damage, we built the model so that we could "damage" it in various ways and 
observe its behavior in performing tasks that are analogous to those performed by the brain-damaged 
patients. A report of the model itself is provided after our qualitative summary. 

3) We agreed to provide a written description of the system to be developed, specifying in detail 
how the computer model was implemented. This description is provided after the summary of the key 
ideas that are incorporated in the theory. 

4) We agreed to provide a description of how the system operates in given circumstances. A 
summary of our progress in achieving this goal is provided after our overview of the theory. 

5) We also agreed to provide a commented version of the code itself, in case other groups want to 
build on what we start. As promised, the code was written so that it can be easily executed on most Unix-
based machines.  

6) Finally, we said that we would indicate the next steps that should be taken to continue to 
develop this research program. The next steps would be: a) To discover whether the model can be scaled 
up. It currently operates only on a very small number of images, and we would like to expand that number 
dramatically. b) To provide a workable interface with low-level vision processing. We currently start with 
a parsed image, but would prefer to have a fully automated system. Dr. Draper has been working on this 
aspect of the project, and we would like to see his work fully integrated with the work on late vision that 
we summarize below. We also provide a summary of the work he has conducted, which follows the 
summary of the model that implements our theory. c) We would like to develop quantitative predictions 
about the effects of specific types of brain damage on behavior. The model is close to a state where this 
would be possible, but additional work would be required to refine the relevant aspects of the model.  

 
2. Methods, Assumptions, and Procedures 

 
2.1 Summary of the theory of visual processing in the brain. 

Our project began with the observation that no animal could survive for long without perception. 
We must perceive the world not only in order to find food, shelter and mates, but also to avoid predators. 
Perception will fail if an animal does not register what is actually in the world. However, this simple 
observation does not imply that all processing during perception is "bottom up"—driven purely by the 
sensory input. Rather, bottom-up processing can be usefully supplemented by using stored information, 
engaging in processing that is "top down"—driven by stored knowledge, goals or expectations. In this 
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project we have explored the nature of top-down processing and its intimate dance with bottom-up 
processing. We begin by considering basic facts about the primate visual system, and then consider a 
theory of its functional organization, followed by novel proposals regarding the nature of different sorts 
of top-down processing. 

 
The Structure of Visual Processing in the Brain 

 
An enormous amount has been learned about visual processing by studying animal models. In 

particular, the macaque monkey has very similar visual abilities to those of humans, and the anatomy of 
its visual system appears very similar to ours. Studies of the monkey brain have revealed key aspects of 
the organization of the visual system, namely its hierarchical structure and the reciprocal nature of most 
connections between different visual areas of the brain. We briefly review key aspects of both 
characteristics of the brain below. 

 
Hierarchical organization 

Over the last several decades, researchers have provided much evidence that the primate visual 
system is organized hierarchically. In the early 60s and 70s, Hubel and Wiesel’s electrophysiological 
findings, first in cats and then in non-human primates, strongly suggested a hierarchical relationship 
among early areas in the visual system; this inference was based on the increasing size and complexity of 
the receptive fields as one goes from striate cortex to areas farther along in the processing stream (Hubel 
& Wiesel, 1962, 1965, 1968, 1974). The earliest areas of the visual system are organized topographically; 
space on cortex represents space in the world, much as space on the retina represents space in the world 
(Felleman & Van Essen, 1991; Fox et al., 1986; Heeger, 1999; Sereno et al., 1995; Tootell et al., 1998; 
Van Essen et al., 2001). The higher-level areas are not organized topographically, but often represent 
information using population codes (e.g., Fujita, Tanaka, Ito, & Cheng, 1992; Miyashita & Chang, 1988; 
Tanaka, Saito, Fukada, & Moriya, 1991). In such codes, different neurons respond to complex visual 
properties, and shape is coded by the specific combination of which neurons are activated. 

The work by Felleman and Van Essen (1991) charted the hierarchical organization of the entire 
visual system. They compiled a matrix of known anatomical connections among areas, and showed that 
the pattern of connectivity could best be accounted for by a hierarchical structure with multiple parallel 
streams. The striate cortex was at the bottom of the entire hierarchy, and the inferotemporal (area TE) and 
parahippocampal (areas TH and TF) cortex were at the top of the ventral stream (which is specialized for 
object vision, registering properties such as shape and color; (Desimone & Ungerleider, 1989).  

The big picture of cortical organization provided by Felleman and Van Essen has been generally 
confirmed by computational analyses of the same dataset (Hilgetag, O'Neill, & Young, 1996), as well as 
by additional empirical approaches, such as those based on measuring the proportion of projecting 
supragranular layer neurons labeled by a suitable retrograde tracer (Vezoli et al., 2004). This 
neuroanatomical picture of a hierarchically organized visual system was also confirmed by data from 
single unit recording studies of higher-level visual areas. For instance, area TE in the inferotemporal 
cortex has been shown to contain neurons with extremely large receptive fields (often encompassing the 
entire visual field), which are tuned to complex combinations of visual features (such as combination of 
shape fragments and textures); in contrast, neurons in lower-level areas, such as V4, have smaller 
receptive fields and are tuned to simpler feature combinations (Tanaka, 1996).  

 
Connections among areas 

A considerable amount is now known about the connections among visual brain areas, and the 
evidence suggests that different connections are used in bottom-up and top-down processing. 
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Feed-forward connections and bottom-up processing. A set of contiguous neurons in area V1 
have contiguous receptive fields (i.e., regions of space in which they will respond to stimuli). A set of 
contiguous neurons in area V1 in turn projects to a single neuron in area V2, and this neuron has a larger 
receptive field than any of those neurons that feed into it. This many : 1 mapping continues up the 
hierarchy until the receptive fields become so large that the areas are no longer topographically organized.  

The neuroanatomical findings and the properties of the receptive fields have given rise to 
numerous models that emphasize the feed-forward nature of the ventral stream (Fukushima, 1988; 
Riesenhuber & Poggio, 1999; VanRullen, Delorme, & Thorpe, 2001; Wallis & Rolls, 1997). 
Electrophysiological findings that document the fast onset of neural responses to visual stimuli at all 
levels in the ventral stream (i.e., the mean latency of neurons in area TE at the highest level of the 
hierarchy is just over 100 ms after stimulus onset) provided additional impetus for these models (Lamme 
& Roelfsema, 2000). In these models, objects are identified during a feed-forward pass throughout the 
ventral stream hierarchy, with increasingly complex information being extracted at higher levels in the 
system. For instance, in Riesenhuber and Poggio’s model of the ventral stream, the units farther upstream 
(from area V1 to TE) are tuned to increasingly complex features, all the way to units that are tuned to 
specific views of objects. 

Feedback connections and top-down processing. Crucially for the topic at hand, and consistent 
with the connectivity pattern reported in earlier work by Rockland and Pandya (1979) and others, 
Felleman and Van Essen described not only feed-forward connections among areas in the primate visual 
system but also widespread feedback connections. They found a striking regularity in the pattern of 
laminar origin of feed-forward and feedback connections: whereas feed-forward connections originate in 
the supragranular layers (often layer III) and terminate in layer IV in the target area, feedback connections 
originate from neurons in layer VI and IIIA of the projecting area and end in layer I of the target area. 
Indeed, numerous other anatomical studies in non-human primates have confirmed that there are massive 
feedback connections at many levels in the visual system, including from areas that are not traditionally 
considered visual areas (Barone, Batardiere, Knoblauch, & Kennedy, 2000; Budd, 1998; Clavagnier, 
Falchier, & Kennedy, 2004; Rockland & Pandya, 1979; Salin & Bullier, 1995). For instance, area V1 has 
been shown to receive direct feedback connections from many extrastriate regions (including V2, V3, V4, 
TEO, TE), as well as from non-visual areas, including the frontal eye fields, area 36, areas TH/TF, STP 
and even auditory cortex. 

The feedback connections are not simply the inverse of feed-forward connections. Whereas the 
feed-forward connections display a lovely many-to-one mapping as they ascend the hierarchy, there is 
nothing of the sort for the feedback connections. Instead, the feedback connections do not appear to be 
precisely targeted, but rather often appear to meander (e.g., Budd, 1998). Evidently, the feedback 
connections are not simply "replaying" information sent downstream. 

 Neuroanatomically inspired models of top-down processing. A class of models of object vision 
has incorporated the finding of feedback connections in the visual system (Grossberg & Mingolla, 1985; 
Li, 1998; Mumford, 1992; Ullman, 1989, 1995). Generally, these models assume that feedback 
connections provide a mechanism by which top-down processing can occur, allowing relatively abstract 
information stored in higher-level visual areas to influence and constrain processing in lower-level visual 
areas. To illustrate the basic idea of why top-down processing is needed, researchers have created 
binarized photographs. In such photos, grayscale pixels are replaced with white if their brightness value is 
above a chosen threshold, or replaced with black if it is below this value. Because binarized images are 
highly degraded, pure bottom-up processes typically cannot organize them correctly into their constituent 
parts, and often one needs to use previously acquired knowledge about objects to identify the objects in 
them (see Figure 1).  
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Figure 1. This binarized picture illustrates the problems encountered by purely 
bottom-up approaches to vision. It is very difficult to parse correctly the fox at 
the center of the picture using purely bottom-up processing. Using top-down 
processing to exploit constraints imposed by knowledge of the shape of foxes 
makes the task much easier. 

 
 

The models just mentioned rest on algorithms that allow an interplay between stored information 
and on-line input. For instance, Mumford posits that higher-level visual areas try to find the best fit with 
the information they receive from lower level visual areas by using the more abstract knowledge they 
store (e.g., a representation of a shape). The feedback connections allow higher-level visual areas to 
reconstruct the visual input in lower-level visual areas, based on such best fit. The mismatch between the 
reconstructed visual input and the original input in lower-level visual areas (i.e., information not 
explained by the current fit in higher-level areas) is then sent forward, which can trigger another top-
down processing cycle.  

This class of models of top-down processing in the ventral stream has typically ignored the role 
of areas outside the ventral stream, or has only postulated unspecified extra-visual inputs. However, many 
non-visual areas in the frontal and parietal lobe are connected to areas in the ventral stream (e.g., Petrides, 
2005). Another class of models, in contrast, focuses on top-down influences that these non-visual areas 
exert on areas in the ventral stream. For instance, the model of prefrontal function by Miller and Cohen 
(2001) has focused on the role of the prefrontal cortex in biasing processing in areas in the ventral stream.  

Traditionally, the different classes of models have been pursued independently, although some of 
the terminology has overlapped. Unfortunately, the term “top-down processing” in vision has been used 
loosely in the neuroscientific literature to refer to a disparate range of phenomena. For instance, it has 
been used in the context of the neural effects of visual attention (Hopfinger, Buonocore, & Mangun, 
2000), memory retrieval (Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 1999), in the context of 
phenomena such as illusory contours (Halgren, Mendola, Chong, & Dale, 2003), and so on.  
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In the remainder of this report we develop explicit distinctions between different types of visual 
top-down processes; these distinctions are cast within the context of a broad theory of the visual system 
that incorporates both bottom-up and top-down processes (Kosslyn, 1994) as well as the role of non-
visual areas. Our aim is to make explicit some of the assumptions regarding top-down processes that are 
implicit in the literature, and propose a first-order taxonomy, rather than to provide an exhaustive review 
of the top-down processing literature. In the following section we briefly summarize our functional theory 
of the visual system and its operations during visual object identification, relying on the background 
already provided, and then we proceed to describe how different types of top-down processing may 
operate within this system. 

 
A Theory of the Functional Organization of Late Visual Processing in the Primate Brain 

 
We propose that there are two general kinds of visual processes, "early" and "late." Early visual 

processes rely on information coming from the eyes, whereas late processes rely on information stored in 
memory to direct processing. We must distinguish between early and late processes and the specific brain 
areas involved in vision: late processes can occur even in areas that are involved in the first stages of 
bottom-up processing (Lamme & Roelfsema, 2000). Low-level visual areas are involved in both early 
(bottom-up) and late (top-down processing). 

Vision, and more specifically object identification, is not a unitary and undifferentiated process. 
Indeed, similarly to memory operations such as encoding and recall, which are carried out by many 
subprocesses (Schacter, 1996; Squire, 1987), object identification is carried out by numerous 
subprocesses (for example, those involved in figure-ground segregation, in shifting attention, in matching 
input to stored information)). Our theory posits a specific set of component visual processes, with an 
emphasis on those involved in late visual processing; we call these components processing subsystems. A 
processing subsystem receives input, transforms it in a specific way, and produces a specific type of 
output; this output in turn serves as input to other subsystems.  

Figure 2 illustrates the most recent version of our theory of processing subsystems. . Although 
this diagram appears to imply sequentiality, the theory does not in fact assume that each processing 
subsystem finishes before sending output to the next. Rather, the theory posits that all processes are 
running simultaneously and asynchronously, and that partial results are continually being propagated 
through the system. Moreover, we assume that what shifts over time is how intensively a given process is 
engaged. Thus, the theory posits processing subsystems that operate in cascade, often operate on partial 
input, and send new outputs to other subsystems before they have completed processing (Kosslyn, 1994). 
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Figure 2. The functional architecture of the visual system (subcortical structures are not shown for 
simplicity). Note that each box represents a structure or process (e.g., the Visual Buffer) that is 
implemented in multiple areas (and often can itself be decomposed into more specialized processes, not 
discussed here). The Associative Memory subsystem is divided into long-term (LT) and short-term (ST), but 
this distinction turned out not to be useful in the tasks we implemented in our model. Some subsystems 
(Associative Memory and Attention Shifting) are implemented by spatially distant brain regions. These 
subsystems are connected by arrowless lines; for simplicity, inputs and outputs from these subsystems are 
only indicated for one of them. Connections that implement reflexive top-down processing are indicated by 
red arrows whereas those that implement strategic top-down processing are indicated in green. Note that 
the reflexive connections can also be engaged by strategic top-down processing (via inputs from the 
information shunting subsystem). Visual input from the lateral geniculate enters the visual buffer via the 
black arrow at the bottom. 

 
 

Processing subsystems used in visual object identification 
The process of object identification can be conceptualized as the search for a satisfactory match 

between the input and stored memories. The specific set of subsystems involved, as well as their 
timecourse of engagement, depends in part on the properties of the incoming visual stimulus. In all cases, 
however, the same architecture is used – the same types of representations and the same processes are 
used, but sometimes in different orders or more or less intensively. The first step in describing our theory 
is to summarize the processing subsystems, at the most general level, as follows. 
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Visual Buffer. In primates, vision is carried out by a multitude of cortical areas, at least 32 in 
monkeys (Felleman & Van Essen, 1991) and probably even more in humans (Sereno & Tootell, 2005). 
Many of these areas, including V1 and V2, are organized topographically. That is, these areas use space 
on cortex to represent space in the world. The specific pattern of activation in these areas reflects the 
geometry of the planar projection of a stimulus; in addition, focal damage to these areas causes scotomas, 
that is, blind spots at the spatial location represented by the damaged cortex. In our theory, the subset of 
topographically organized areas in the occipital lobe implement what we refer to as the visual buffer .  

However, even if we think of the set of these topographically organized areas as a single 
functional entity, these areas are hierarchically organized themselves, and have somewhat different 
functional properties. We stress that although these areas are at the bottom of the visual hierarchy, and 
thus carry out bottom-up processes necessary for vision, they are also affected by top-down processes 
originating both within other portions of the visual buffer itself and from areas outside this structure. 

Attention Window. Not all the information in the visual buffer can be fully processed. A subset of 
the information in the visual buffer is selected by an attention window, based on location, feature or 
object of interest, for further processing (Brefczynski & DeYoe, 1999; Cave & Kosslyn, 1989; Posner & 
Petersen, 1990; Treisman & Gelade, 1980). There is good evidence that this attention window can be 
covertly shifted (Beauchamp, Petit, Ellmore, Ingeholm, & Haxby, 2001; Corbetta & Shulman, 1998; 
Posner, Snyder, & Davidson, 1980) and it can also be split—at least in some specific circumstances--to 
include non-adjacent regions in the visual space (McMains & Somers, 2004).  

Object-Properties-Processing. As discussed earlier, many connections run from the 
topographically organized areas of the occipital lobe to other areas of the brain, giving rise to parallel 
processing streams. The ventral stream runs from the occipital lobe to the inferior temporal lobe 
(Desimone & Ungerleider, 1989; Haxby et al., 1991; Kosslyn, 1994; Mishkin, Ungerleider, & Macko, 
1983; Ungerleider & Mishkin, 1982), where visual memories are stored (e.g., Fujita, Tanaka, Ito, & 
Cheng, 1992; Tanaka, Saito, Fukada, & Moriya, 1991). The visual memories are stored, at least in the 
monkey brain, using a population code by which nearby cortical columns do not store information about 
nearby points in two-dimensional space, but information about nearby points in feature space (e.g., Fujita 
et al., 1992; Miyashita & Chang, 1988; Tanaka et al., 1991). These areas, implementing what we will 
refer to as the object-properties-processing subsystem, not only store information about shape and shape-
related properties of objects and scenes, such as color and texture, but also match input to such stored 
information. Visual recognition of an object occurs when the content of the attention window matches a 
stored visual representation in this system.  

Spatial-Properties-Processing. In addition to being able to determine the identity of objects we 
can also determine their location in space. Our visual system accomplishes this by allocating different 
resources to extract and process information about properties that are inherent to objects (such as their 
shape or color) versus information about their spatial properties (such as their size and location). The 
object-properties-processing subsystem essentially ignores spatial information, and produces—position-
invariant object recognition (Gross & Mishkin, 1977; Rueckl, Cave, & Kosslyn, 1989). In contrast, spatial 
processing captures the very information discarded during object processing. Spatial processing is 
accomplished by the dorsal stream, a pathway that runs from the occipital lobe to the posterior parietal 
lobe (e.g., Andersen, Essick, & Siegel, 1985; Haxby et al., 1991; Kosslyn, Thompson, Gitelman, & 
Alpert, 1998; Ungerleider & Mishkin, 1982). In our theory, these posterior parietal regions embody what 
we refer to as the spatial-properties-processing subsystem.  

According to our theory, the spatial-properties-processing subsystem not only registers spatial 
properties, but also constructs object maps, which indicate the locations of objects or parts of objects in 
space (cf., Mesulam, 1990). The cortex that implements at least part of the spatial-properties-processing 
subsystem is topographically organized, and thus at least some of the representations used in this 
subsystem depict the locations of objects in space (Sereno, Pitzalis, & Martinez, 2001).  
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Associative Memories. Outputs from both the object-properties-processing and spatial-properties-
processing subsystems converge on associative memories. Associative memories specify links among 
representations. Our theory posits two classes of associative memories. On the one hand, short-term 
associative memory structures maintain information on-line about which objects are in specific locations 
(Rao, Rainer, & Miller, 1997; Wilson, Scalaidhe, & Goldman-Rakic, 1993). These memory structures are 
implemented in the dorsolateral prefrontal regions. On the other hand, long-term associative memory 
structures store more enduring associations among stored categories, characteristics, situations, and 
events. If the outputs from the object-properties-processing and spatial-properties-processing subsystems 
match a stored representation in long-term associative memory, the information associated with it is 
accessed, leading to object identification. For instance, if the shape matches that of a cat, one can access 
information that it is a mammal, likes to drink milk, and sometimes sleeps much of the day. If no good 
match is found, the best-matching representation is used as a hypothesis of what the viewed object might 
be (we will discuss this process in detail shortly). Long-term associative memory is implemented in 
Wernicke's area, the angular gyrus, classic "association cortex" (e.g., Area 19, Kosslyn, Thompson, & 
Alpert, 1995), and parts of the anterior temporal lobes (e.g. Chan et al., 2001).  

Information Shunting. In our theory, when the match of the input to representations in long-term 
associative memory is poor, then representations of distinctive visual parts and attributes of the best-
matching object are retrieved and used by an information shunting subsystem (cf. Gregory, 1970; Neisser, 
1967; Neisser, 1976) to guide top-down search. Thus, by means of this process, the visual system actively 
seeks information to test hypotheses about the visual input. The information shunting subsystem operates 
in two related ways: First, it sends information to other subsystems, enabling them to shift the focus of 
attention to the likely location of distinctive parts or attributes. Second, simultaneously, the information 
shunting subsystem primes representations of these parts and attributes in the object-properties-processing 
subsystem (cf. Kosslyn, 1994; McAuliffe & Knowlton, 2000; McDermott & Roediger, 1994), which 
facilitates the ease of encoding these representations. The information shunting subsystem is implemented 
by one or more parts of dorsolateral prefrontal cortex (DLPFC) (e.g., see Damasio, 1985; Koechlin, 
Basso, Pietrini, Panzer, & Grafman, 1999; Luria, 1980; Petrides, 2005; Posner & Petersen, 1990). 
However, the DLPFC is a very large region, and so it is unlikely that implementing the information 
shunting subsystem is its only function; moreover, different regions of DLPFC in principle may 
implement specialized components of the information shunting subsystem, with each operating only on 
specific types of information (e.g., location versus shape).  

Attention Shifting. Shifting the focus of attention to a new location or to a new attribute involves a 
complex subsystem, which is implemented in many parts of the brain (including the superior parietal 
lobes, frontal eye fields, superior colliculus, thalamus and anterior cingulate (see Corbetta, 1993; Corbetta 
& Shulman, 1998; LaBerge & Buchsbaum, 1990; Mesulam, 1981; Posner & Petersen, 1990). The 
attention shifting subsystem can shift the location of the attention window both covertly and overtly, such 
as occurs when we move our eyes, head or body to look for new information.  

 
Operation of the subsystems working together 

If an object is seen under optimal viewing conditions and is familiar, recognition (i.e., the match 
to visual representations in the object-properties-encoding subsystem) and identification (i.e., the match to 
representations in long-term associative memory) proceed very quickly and may be carried out entirely 
via bottom-up processes. However, if an object cannot be recognized and identified relatively quickly via 
bottom-up processing because it is unfamiliar or is seen under impoverished viewing conditions, then 
there is time for top-down processing to unfold. In this case, information about attributes of the best-
matching object is accessed from long-term associative memory, and then is used to direct attention to the 
location where a distinctive part or attribute should be found (and to prime the object's representations in 
the object-properties-encoding subsystem), and a new part or attribute is encoded into the visual buffer, 
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beginning a new processing cycle. If the new part or attribute matches the primed representation in the 
object-properties-processing subsystem, this part or attributes is recognized, and this may lead to a good 
match in long-term associative memory-- and the object will have been identified. If not, either additional 
parts or attributes of that object are sought or another hypothesis is generated (e.g., by taking the next 
best-match in long-term associative memory) to guide a new search for a distinctive part or attribute.  

 
Varieties of Top-Down Processing 

 
In describing our theory, at different points we have invoked distinct types of top-down 

processing. In most theories, these different types are conflated, and simply referred to as different 
instances of the same kind of activity. However, we propose here that these processes are in fact distinct, 
and that each operates only in specific circumstances. In the following, we will outline a first-order 
taxonomy, and discuss some of the empirical evidence that supports it. Our theory makes an initial 
distinction between two broad classes of top-down mechanisms.  

 
Strategic top-down processing 

Strategic top-down processing relies on "executive control mechanisms" (which provide input to 
the information-shunting subsystem) to direct a sequence of operations in other brain regions, such as is 
used to engage voluntary attention or to retrieve stored information voluntarily. In the case of visual 
object recognition, strategic top-down processing is recruited when the initial encoding is not sufficient to 
recognize an object. In such circumstances, the best-matching information is treated as a hypothesis, 
which then is used both to shift the focus of attention and to prime representations in the object-
properties-processing subsystem to facilitate the encoding of a sought part or characteristic.  

For example, if a picture of a degraded object (degraded perhaps because it is partially hidden by 
another object, or is in poor lighting) is presented in a familiar visual context, then the best-matching 
representation in long-term associative memory is treated as an "hypothesis," which is used by the 
information shunting subsystem to direct attention to possible parts or characteristics that would identify 
the degraded object (Ganis, Schendan, & Kosslyn, submitted; Kosslyn, Thompson, & Alpert, 1997). To 
illustrate, if a chair is presented in the context of a kitchen, the associations stored in long-term 
associative memory can be used to identify the chair even if only small parts of it are visible above and 
behind the table.  

We also note that strategic top-down processing can also take place in the absence of any visual 
input, such as in some cases of visual imagery. In these cases, the information-shunting subsystem directs 
a sequence of operations entirely driven by endogenously generated information, which leads to the 
retrieval of stored information in the absence of an external stimulus (see Kosslyn, Thompson, & Ganis, 
2006).  

Two classes of evidence for strategic top-down processing have been reported, from non-human 
primates and humans. We summarize important examples of each class of research in what follows. 

Strategic top-down processing in non-human primates. Although it is very difficult to obtain 
direct neural evidence for top-down processing because, at minimum, it entails recording neural activity 
from multiple sites in awake animals, some of this sort of direct evidence is available in nonhuman 
primates.  

One of the most compelling studies that demonstrates strategic top-down processing in action was 
reported by Tomita and collaborators on the retrieval of visual paired associates in monkeys (Tomita et 
al., 1999). In this study, monkeys first learned a set of paired-associates, and then the posterior parts of 
the corpus callosum was severed; after this surgery, the only remaining communication path between 
hemispheres was via the anterior parts of the corpus callosum, which connect the prefrontal cortex in the 
two hemispheres. Thus, following surgery, a visual stimulus presented to the left hemisphere (right visual 
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hemifield) could only affect neural activity in right inferotemporal cortex by means of an indirect route, 
which drew on the left prefrontal cortex, the anterior corpus callosum, and the right prefrontal cortex (the 
corresponding sets of structures hold for right hemifield presentation). As expected, the presentation of a 
cue to one hemifield resulted in robust bottom-up activation of stimulus-selective inferotemporal neurons 
in the contralateral hemisphere (with an average latency of 78 ms). Crucially, presentation of the same 
cue to the other hemifield (ipsilateral) resulted in delayed activity in neurons that were selective for the 
probe or the paired associate (with an average latency of 178 ms).  

After the main experiment, fully severing the callosum abolished responses to the ipsilateral 
stimuli but left the responses to the contralateral stimuli intact, which showed that the previous results 
were not due to subcortical influences. These results provide good evidence that the prefrontal cortex 
sends top-down signals to inferotemporal neurons during the retrieval of visual information.  

Fuster and his collaborators reported another study that documented strategic top-down 
processing in nonhuman primates; this study relied on a reversible cooling technique that temporarily 
inactivates an area by using cooling probes (Fuster, Bauer, & Jervey, 1985). In this study, spiking activity 
was recorded from single neurons in monkey inferotemporal cortex during a delay match-to-sample task 
with colors, while the prefrontal cortex was inactivated bilaterally via cooling probes. Before inactivation, 
during the delay period, neurons in inferotemporal cortex showed a sustained response with a clear 
preference for the color to be remembered. However, inactivation of prefrontal cortex by cooling 
impaired this selectivity profile. The critical finding was that inactivation of prefrontal cortex impaired 
the monkey’s performance in this task. These data indicate that top-down signals from prefrontal cortex 
are necessary for the maintenance of delayed, stimulus-specific activity in the inferotemporal cortex when 
no external stimuli are present.  

Another study that documented strategic top-down processing in nonhuman primates was 
reported by Moore and Armstrong (Moore & Armstrong, 2003). This study was designed to investigate 
the effects of electrical stimulation of the frontal eye fields on neural activity in area V4. When electrical 
stimulation of the frontal eye fields is strong enough, it produces systematic saccades to specific 
locations; the specific target location of the saccade depends on which specific part of the frontal eye 
fields is stimulated. The researchers recorded from neurons in V4 that had receptive fields at the location 
where specific stimulation of the frontal eye field directed a saccade. The activity of the V4 neurons to 
preferred and non-preferred visual stimuli was also recorded without stimulation or with subthreshold 
stimulation of the frontal eye fields (subthreshold stimulation is not sufficient to elicit a saccade). The 
results showed that the responses of V4 neurons were enhanced when a preferred visual stimulus was 
within the neuron’s receptive field and the frontal eye fields were stimulated subthreshold (i.e., without 
generating a saccade) compared to when there was no stimulation. Crucially, this effect was not present 
without a visual stimulus or with a non-preferred visual stimulus in the neuron’s receptive field. 
Furthermore, the effect was not present if the receptive field of the neuron did not cover the end location 
of the saccade that would be elicited by suprathreshold stimulation of the frontal eye fields. Thus, 
electrical stimulation of the frontal eye fields simulated the operation of covert attentional shifts on neural 
activity in V4 (note that the eye movements were monitored carefully and trials during which the monkey 
was not fixating were excluded from the analyses). This finding provides direct evidence that strategic 
top-down signals can originate in the frontal eye fields, and then can affect activation in at least one area 
that we include in the visual buffer.  

Another study, reported by Buffalo and collaborators (Buffalo, Fries, Landman, Liang, & 
Desimone, 2005), charted the timecourse over which areas in the ventral stream are engaged during 
strategic top-down processing. In this study, the researchers recorded single-unit and multi-unit activity in 
areas V4, V2 and V1, both during the peripheral presentation of visual stimuli and during a visual 
attention task. Firing rates were compared for conditions when the animal paid attention to a stimulus 
inside versus outside the receptive field of the neuron (while the monkey maintained fixation). As found 
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in other studies, paying attention to a stimulus inside the receptive field of neurons in areas V1, V2, and 
V4 increased firing rates. The onset of the attentional effects revealed a striking pattern: area V4 showed 
the earliest onset (240 ms post-stimulus onset), area V2 was next (370 ms), and area V1 was last (490 
ms). When the researchers presented simple visual stimuli, they now found exactly the reverse order of 
activation onset. These results strongly suggest that strategic top-down signals trickle down from higher-
level visual areas that receive these signals from prefrontal or parietal areas. 

Strategic top-down processing in humans. In humans, the evidence for strategic top-down 
processes is largely indirect, because of limitations of the non-invasive neuroimaging techniques 
employed. Nonetheless, such evidence is consistent with that from nonhuman primates. We will discuss 
briefly three functional magnetic resonance imaging (fMRI) studies that document how strategic top-
down processes affect neural activation in the ventral stream in humans.  

Kastner and colleagues (Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999) investigated 
the mechanisms by which visual attention affects activation in occipital cortex in the presence of multiple 
stimuli. The rationale for this study was grounded in a finding from single-cell studies of monkeys; this 
finding showed that responses of neurons in areas V2 and V4, to an otherwise effective stimulus, decrease 
when a second stimulus is presented in the neuron’s receptive field. However, this decrease in response is 
eliminated if the animal pays attention to the first stimulus, ignoring the other stimuli in the receptive field 
(Reynolds, Chelazzi, & Desimone, 1999). To test the hypothesis that these same effects can occur in the 
human visual system, Kastner and collaborators presented four images in the upper right visual quadrant, 
either simultaneously (SIM) or in sequence (SEQ) in independent trials. In the “attend” condition (ATT), 
the participants were asked to maintain fixation and to pay attention to the images presented peripherally 
at a given spatial location and ignore the others. In the control condition, participants were asked simply 
to maintain fixation and ignore all visual stimuli in the periphery (UNATT). During ATT trials, 11 
seconds before the onset of the visual stimuli there was a small cue at fixation, telling participants to 
direct attention covertly to the appropriate location in the visual field, waiting for the visual stimuli to be 
presented. Using this methodology, the researchers could monitor brain activity during attention in the 
absence of visual stimulation.  

The results revealed increased activation during the expectation period (before the onset of the 
visual stimuli) in several visual areas, including V1, V2/VP, V4, and TEO. The increased baseline 
activation was retinotopically specific, and it was strongest in visual areas TEO and V4. This increase in 
baseline firing rates in the absence of visual stimuli is very similar to that found in non-human primates 
during attentional tasks (e.g., Luck, Chelazzi, Hillyard, & Desimone, 1997). In addition, Kastner and 
colleagues found greater activation in extrastriate visual areas in the response to visual stimuli during the 
ATT condition, relative to the UNATT condition. Furthermore, as expected, the increase was larger in the 
SIM than in the SEQ condition, because the inhibitory effects of multiple stimuli were not as strong when 
the stimuli were presented sequentially. Finally, the researchers did not observe an effect of type of 
presentation in area V1, probably because the receptive fields in area V1 are too small to encompass more 
than one of the stimuli used in this experiment. 

Kastner and collaborators also examined activation in areas outside the ventral stream, to gather 
evidence about the sources of the modulation of visual areas. They found that areas in the frontal lobe 
(specifically, the frontal eye fields and supplementary eye fields) and in the parietal lobe (the inferior 
parietal lobule and superior parietal lobule) showed robust increases in activation during the expectation 
period. The frontal eye fields, supplementary eye fields and the superior parietal lobe areas did not 
display increased activation following presentation of the visual stimuli, which suggests that they were 
not driven by bottom-up information but rather were involved in strategic top-down processing. This 
result is consistent with the fact that the frontal eye fields and the supplementary eye fields have rich 
efferent (i.e., feedback) connections to areas in the ventral stream and posterior parietal cortex (Felleman 
& Van Essen, 1991). Furthermore, this result is consistent with findings that these areas are engaged 
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during covert shifts in attention (Beauchamp et al., 2001; Corbetta, 1993; Corbetta & Shulman, 1998), as 
described earlier.  

Another fMRI study, performed by Ress, Backus, & Heeger   confirmed and complemented 
Kastner et al.'s findings. In this study, participants were asked to respond when an annulus (inner radius = 
3 deg/outer radius = 6 deg) appeared in the center of the screen. In the main condition, the contrast of the 
stimuli was adjusted for each participant so that correct detection occurred only on 75% of the trials. 
Target trials were intermixed with catch trials, during which no stimulus was presented. A slow event-
related paradigm was used to allow the analysis of activation during individual trials. Results showed that 
the regions in areas V1, V2, and V3 representing the annulus exhibited a robust BOLD response both 
during annulus-present and annulus-absent trials (note that the annulus-absent trials resemble the UNATT 
condition in the experiment by Kastner et al.). In fact, when the stimulus was presented at the lowest 
contrast levels (near-threshold), activation during the annulus-present trials was only slightly stronger 
than during the annulus-absent trials. Crucially, BOLD activity predicted the participant's performance on 
the detection task: the greater the activity, the more likely the participant would correctly detect the 
presence or absence of the annulus. Furthermore, the annulus-absent BOLD response was much smaller 
during an independent condition that used blocks of trials with higher contrast stimuli (which were easier 
to detect), which suggests that this response reflected neural activation required to perform the more 
difficult detection task. Strategic top-down processes might increase sensitivity in low-level visual areas 
to incoming visual stimuli by pushing the neuron into a higher gain region of its operating range, where 
smaller differences in the input produce relatively larger differences in response (Ress, Backus, & Heeger, 
2000). Because higher firing rates are costly metabolically, it makes sense to have a mechanism that can 
increase sensitivity by increasing baseline firing rates only during difficult detection situations. 

Although the study by Kastner et al. (1999) found parietal and frontal activation during the 
expectation period, the results do not provide direct evidence that these regions are actually a source of 
strategic top-down influences. Furthermore, Ress and collaborators did not sample the entire brain, and 
therefore were unable to provide direct evidence as to source of the modulation of activation they 
observed in striate and extrastriate cortex. A more recent fMRI study used dynamic causal modeling to 
investigate the direction of influences among brain areas during visual mental imagery and visual 
perception (Mechelli, Price, Friston, & Ishai, 2004). The key to this study is the comparison between 
mental imagery and perception. According to our theory, during visual imagery the information shunting 
subsystem retrieves stored representations of the structure of an object in long-term associative memory 
and sends information to the object- and spatial-properties processing subsystems to activate the 
corresponding modality-specific representations. According to the theory, this activation process is 
identical to the priming that occurs during top-down hypothesis testing in perception; however, now the 
priming is so strong that activation propagates backwards, and an image representation is formed in the 
visual buffer. The visualized shapes and spatial relations are retained (which is equivalent to holding them 
in "working memory"), and they can be inspected and identified in an image by the same attentional 
mechanisms used to inspect objects and locations during perception.  

Mechelli et al. compared blocks of trials in which participants formed visual mental images of 
faces, houses, or chairs with blocks of trials in which participants actually viewed the same objects. The 
researchers first measured intrinsic connectivity during visual perception and visual imagery, that is, the 
influence brain regions have on each other as a result of being in visual perception or visual imagery 
modes (regardless of the visual category); such intrinsic connectivity was then used as a baseline to 
quantify functional connectivity changes brought about by the experimental manipulation (visual 
category) within those modes. The intrinsic connectivity during visual perception revealed paths from 
occipital cortex and superior parietal cortex to ventral temporal cortex, whereas that during visual mental 
imagery revealed paths from superior parietal cortex and the precuneus to ventral temporal cortex. 
Analyses on the category specificity of the changes in functional connectivity showed that during visual 
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perception there was an increase in functional connectivity from low-level visual cortices to the regions of 
ventral temporal cortex selective for the corresponding stimuli. For instance, the functional connectivity 
between inferior occipital cortex and the ventrotemporal region that responded the most to faces increased 
the most during the presentation of blocks of trials containing faces (compared to blocks of trials 
containing houses or chairs). In contrast, during visual mental imagery, the researchers found a selective 
increase in functional connectivity from prefrontal cortex and parietal cortex to these regions in ventral 
temporal cortex. However, only the strength of the path from prefrontal cortex was modulated by stimulus 
category (i.e., faces, houses, or chairs). For instance, the functional connectivity between prefrontal cortex 
and the ventrotemporal region that responded the most to faces increased the most during the presentation 
of blocks of trials containing faces (compared to blocks of trials containing houses or chairs). Thus, the 
analysis of functional connectivity changes during visual imagery (compared to visual perception) 
suggests the existence of two types of strategic top-down influences on the ventral stream. The first one is 
an influence from the parietal cortex that is not modulated by stimulus category (i.e., it is the same 
regardless of the category of the visualized stimulus) and may reflect the operation of attentional 
mechanisms, whereas the second one is a category-specific signal that may be involved in the 
reconstruction of visual information in category-specific areas in the ventral stream.  

 
Reflexive top-down processing 
 We have so far been focusing on strategic top-down processing, which is under voluntary control. 
We also propose a second major class of top-down processing, which is automatic. Such reflexive top-
down processing occurs between areas that are bidirectionally connected in the visual buffer, the object-
properties-processing subsystem, and in long-term associative memory. Crucially, reflexive top-down 
processing is triggered by bottom-up signals without the intervention of the information shunting 
subsystem in the prefrontal cortex. 

Reflexive top-down processing in non-human primates and in humans. The best evidence for 
reflexive top-down processing comes from studies in non-human primates that investigated how stimulus-
driven neural activity in area V1 is affected by activity in higher-level visual areas. Similar processes 
probably take place in higher levels of the visual hierarchy and in long-term associative memory as well. 

Some of the more compelling experiments use reversible inactivation techniques in anesthetized 
animals; these techniques rely on cooling or application of the inhibitor GABA. One critical finding is 
that inactivation of area V2 changes the response properties of neurons in area V1, generally making them 
less selective (Payne, Lomber, Villa, & Bullier, 1996; Sandell & Schiller, 1982). However, it is difficult 
to know how the anesthesia affected these results. Thus, findings obtained in awake monkeys, such as 
from the study reported by Lee and Nguyen (Lee & Nguyen, 2001), are probably more compelling. In 
Lee and Nguyen's study, activity was recorded from neurons in area V1 and V2 while monkeys viewed 
illusory contours (such as the ones produced by the four black disks in Figure 3) as well as corresponding 
real contours. The presentation paradigm was slightly different from that of previous studies that had 
failed to observe responses to illusory contours in V1 neurons (von der Heydt, Peterhans, & Baumgartner, 
1984). In this new paradigm, four black disks centered at the corners of an imaginary square were first 
presented for 400 ms. Then they were suddenly replaced with four corner disks in the same position, 
giving the impression that a white square had appeared in front of them, generating partial occlusion. 
There were also numerous control conditions, including squares defined by real contours.  

The results of Lee and Nguyen's study showed that, as expected, neurons in V1 responded 
vigorously to real contours of appropriate orientation, with a response onset of about 50 ms relative to 
stimulus onset. These same neurons, at least those in the superficial layers of V1, also responded to 
illusory contours with the same preferred orientation. However, the neurons responded more weakly to 
illusory contours, and, crucially, they began to respond about 55 ms later than they did to the real 
contours. The neural responses in area V2 to illusory contours were generally stronger than those in area 
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V1 and began around 65 ms post-stimulus, which was about 40 ms before the V1 response. One plausible 
interpretation of this finding is that V2 neurons, with their larger receptive field size compared to area V1 
neurons, integrate more global information and can aid the contour completion process in V1 by sending 
feedback. The advantage of sending information back to area V1 is that V1 maintains a higher-resolution 
version of the visual input (because of its small receptive field sizes), whereas higher-level visual areas 
have access to more abstract and global information required to parse the visual input into meaningful 
parts (e.g., surfaces) (Lee & Mumford, 2003; Lee & Nguyen, 2001). In addition to feedback processes, 
these findings may also reflect properties of recurrent circuits within V1 itself, which may take as long to 
carry out some contour completion operations as feedback from area V2 (Girard, Hupe, & Bullier, 2001).  
 

 
Figure 3. An example of illusory contours (modal contours) 
used to study feedback from V2 to V1. 

 
 
Although Lee and Nguyen (2001) did not record from neurons outside of areas V1 and V2, the 

completion processes documented by this study are probably also affected by feedback from higher-level 
visual areas, such as inferotemporal cortex, perhaps on a different timescale. Indeed, monkeys with 
inferotemporal lesions have been shown to be severely and permanently impaired at shape 
discriminations based on illusory contours (Huxlin, Saunders, Marchionini, Pham, & Merigan, 2000). 
Furthermore, this putative role of feedback from higher-level areas is consistent with results from 
neuroimaging studies of humans, although the limitations of the non-invasive techniques make inferences 
more difficult to draw. For instance, Halgren and colleagues (2003) recorded Magnetoencephalography  
(MEG) while participants viewed arrays of shapes defined by illusory contours versus arrays that 
contained similar stimuli without illusory contours. The MEG activation to illusory contours was 
localized to the cortical surface by using a linear estimation approach that included noise-sensitivity 
normalization (Dale et al., 2000; Liu, Belliveau, & Dale, 1998). The results revealed multiple waves of 
activation in occipital polar cortex that suggested the operation of feedback loops. Specifically, following 
an earlier activation in the occipital pole around 100 ms after stimulus onset, a second wave of activation 
between about 140 and 190 ms after stimulus presentation spread from object-sensitive regions in the 
anterior occipital lobe back to foveal parts of areas V3, V3a, V2, and V1.  

Finally, when reviewing the cognitive neuroscience literature on illusory contours, (Seghier & 
Vuilleumier, 2006) suggested that there may be two distinct feedback processing stages unfolding during 
the first 200 ms post-stimulus: the first involves interactions between areas V1 and V2, and the second 
involves feedback to areas V1 and V2 from higher-level visual areas, such as lateral occipital complex 
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(probably homologous to some object-sensitive inferotemporal regions in monkeys—which corresponds 
to our object-properties-processing subsystem). According to our definition of reflexive top-down 
processing, both processing stages would be examples of reflexive top-down processes, even though they 
take place among different sets of areas in the ventral stream.  

 
Modulating interpretation  

We further propose that both strategic and reflexive top-down processing can operate by altering 
the way earlier activation is interpreted. We can distinguish two types of such processing, which are 
directly analogous to changing the parameters d' and ß in classical signal detection theory.  

Changing sensitivity. On the one hand, higher-level areas can increase or decrease the sensitivity 
(corresponding to d') of the neurons that implement subsystems earlier in the processing stream (e.g., by 
increasing the baseline firing rates), making them more likely to detect the information to which they are 
selective. For example, in our theory, the attention shifting subsystem has the effect of priming some 
regions of the visual buffer (i.e., focusing the "attention window"). In addition, the information shunting 
subsystem passes information from long-term associative memory to the object-properties-processing 
subsystem; this information has the effect of increasing the sensitivity of neural populations in this 
subsystem for the expected parts or characteristics.  

This sort of "anticipatory" priming is strategic; a comparable kind of reflexive priming can occur 
in the presence of a highly constraining context. In such a case, associations in long-term associative 
memory would be activated by the input, and may have the effect of reflexively providing feedback to 
increase the sensitivity to objects that are associated with the context (such as a nose in the context of a 
face). By the same token, sensitivity can also be reduced, for instance, to filter out unwanted stimuli. 
Some of the studies discussed earlier (Kastner et al., 1999; Ress et al., 2000) that found baseline increases 
due to expectation in the absence of visual information illustrate this type of process taking place in 
multiple areas in the ventral stream.  

Changing decision criterion. On the other hand, feedback can alter how much information is 
necessary to make a decision. For example, to the farmer gathering his cows at dusk, a passing shadow 
may be sufficient to recognize a cow. Such changes in criterion (ß in classical signal detection theory) 
could affect two kinds of processing:  

First, they could affect simple detection thresholds. For example, they could alter how much 
activation of specific neurons in area V4 is necessary to register that one is viewing a particular color. 
Similarly, if one is expecting to see a handle on a cup, the threshold for that part could be lowered to the 
extent that only a small portion of the handle would be required to trigger the corresponding 
representations in the object-properties-processing and long-term associative memory subsystems. 

Second, top-down processing could alter the threshold difference in activation required to decide 
between two or more alternatives. For example, a "winner take all" process probably takes place in the 
object-properties-processing subsystem, where representations of objects are mutually inhibitory – so that 
only one representation of an object is activated at a time. Top-down processing could affect how much 
relative difference in activation is required for one representation to "win" over its competitors (e.g., 
Kosslyn, 1994; Miller & Cohen, 2001). For example, when viewing a kitchen scene, reflexive top-down 
processing from long-term associative memory may bias representations of "chair" so that they are not 
only activated by less input (i.e., their thresholds are lowed), but they need not be activated much more 
strongly than representations of other objects. 

 
Supplementing input 

In addition to altering how input is interpreted (via changing sensitivity or decision criterion), 
either strategic or reflexive top-down processing could have its effects by actually filling in missing 
information. In neural network models, such processing is called "vector completion" (e.g., Hopfield, 
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1982). According to our theory, if representations in the object-properties-processing subsystem are 
primed strongly enough, feedback connections from the areas that implement this subsystem to the areas 
that implement the visual buffer can force activation in these early visual cortical areas. This activation in 
turn corresponds to a high-resolution visual mental image; all such imagery relies on such completion 
operations. Such images can be strategic, as when one intentionally tries to visualize, or reflexive, as 
occurs when a partially degraded object is seen and one "automatically" fills in missing contours. As an 
illustrative example, say that you see just the very tip of the nipple on a baby bottle sticking out from 
under a cloth. The portion of the tip (its shape, size, texture and color) is sufficiently distinctive that the 
"baby bottle" representation in the object-properties-processing subsystem is activated. However, the 
input is too degraded to be sufficient for recognition. In this case, top-down processes may "complete" the 
image, allowing one to "see" the remainder of the bottle (as a specific shape under the cloth), at the proper 
size and orientation to fit the visible features. If that image cannot be "fit" to the input, then the object 
must be something else. If the input image can be so "completed," that would be evidence that the 
activated representation is appropriate.  

We stress that the process of supplementing input is distinct from even an extreme case of 
modulating interpretation, either via altering sensitivity or criterion: no matter how much we increase 
sensitivity for a certain visual attribute or lower our decision threshold, missing information is not filled 
in. Completion involves actually adding information to a representation earlier in the processing 
sequence. Some of the studies discussed earlier (Mechelli et al., 2004; Tomita et al., 1999) are examples 
of strategic top-down processes that perform some form of pattern completion. 

The distinction between modulating interpretation and supplementing input corresponds to the 
distinction between "inspecting" a pattern in a visual mental image and "generating" the image in the first 
place (Kosslyn, 1994). The former process relies on mapping the input to a specific output, which is the 
interpretation; whereas the latter relies on using one representation to create another, which need not be 
fully interpreted in advance. For example, when asked what shape are Mickey Mouse's ears, most people 
report that they visualize the cartoon character. The process of visualizing relies on strategic top-down 
processing, where information in the visual buffer is supplemented – creating a pattern that depicts the 
object. Once formed, this representation can then be interpreted; one can classify the ears as "round." At 
the outset, however, the pattern was not necessarily interpreted in this way; such prior interpretation is not 
a prerequisite for generating an image (see Kosslyn et al., 2006). 
  In sum, our theorizing set the stage for implementing a new computational model, which 
incorporates novel distinctions regarding the nature and types of top-down processing.  

 
Formulating the "Binder" 

 
Finally, we used the theory and distinctions to guide an encyclopedic literature review, the results 

of which are provided in a binder. We not only looked at the citations in all of the articles cited above and 
followed up relevant articles, but also conducted searches on Pubmed and PsychInfo, as well as Google. 
We sought to find all research that pertained to each of the subsystems and their anatomical and 
functional connections. This literature stretched from neurophysiology and neuroanatomy of animal 
models to human neuroimaging to relevant studies of behavior. The result is the binder, which is 
organized according to the distinctions we draw in the theory. We also include a section on representative 
computational modeling (this is not all-inclusive, which would have gone beyond the scope of our 
project). The articles on other computational models serve not only to set the stage for our own modeling, 
but provide a context for understanding the value and importance of the studies cataloged in the 
remainder of the binder. The results we found provided strong constraints on our own computational 
model, which we intended to be consistent with the available literature. 
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3. Results and Discussion I: Computational Modeling of Late Vision and Mental Imagery (IMPER 
model) 
 
3.1 IMPER model specifications. 

We have made progress in implementing the theory in a running computer simulation model. 
Note that the focus of this model is at the systems level: We had to model all the components in sufficient 
detail to have a working model, but the main issue is the extent to which the same system, as a whole, can 
carry out both perception and imagery operations. The following is the specification for all components of 
the IMPER (IMagery and PERception) model, which consists of the processing subsystems summarized 
in the first section of this report (see Figure 2): the visual buffer (VB), object properties processing 
system (OPPS), spatial properties processing system (SPPS), associative memory (AM), information 
shunting system (IS), and attention shifting system (AS). Each component corresponds transparently to 
processing subsystems postulated in our theory. IMPER models both forward and backward information 
flow between these processing subsystems and tries to capture essential aspects of both strategic and 
reflexive top-down processing. Although the underlying brain systems send continuous signals, these 
processes are modeled in discrete time steps. 

 
Visual Buffer 

 
The role of the visual buffer (VB) is to hold the image information that is being processed by the 

rest of the system. The attention window (AW) is the current focus of the VB and can either store the 
whole image (at a limited resolution) or focus on specific details in high-resolution. The VB does some 
basic level processing of the image as a whole (output for the spatial properties processing system, SPPS) 
and then further analyzes the contents of the AW (output for the object properties processing system, 
OPPS). 

Input 
From Experiment: 
• Current image input from early vision (if any) 
From OPPS: 
• High curvature points on the most likely object model (in center relative coordinates) 
• Confidence in the likelihood of the object model 
From SPPS: 
• Center point of the figure (in absolute coordinates) 
• Standard deviation of the center 
From AS (attention shifting system): 
• AW position (in absolute VB coordinates) 
• AW size (in absolute VB coordinates) 

Output 
To OPPS: 
• Set of high curvature points from the current image 
 
To SPPS: 
• Center of image (in absolute VB coordinates) 
• Four spread points (top, down, left, and right of center) 
• Center of AW 
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• Size of AW 
Representation and processing 

The visual buffer (VB) holds the current image, whether perceived or imagined. In the case of 
perception, it does early processing of the input image, simulating the processing done in early visual 
areas. Furthermore, the VB extracts essential image information for both the spatial (SPPS) and object 
(OPPS) properties processing systems. It also receives reflexive feedback from each of these systems, 
which affects how it processes the current image.  

The VB also receives input from the attention shifting system (AS), which tells it where to locate 
the attention window (AW). The location and scope of the AW affects the VB processing for the OPPS 
and SPPS, although part of the SPPS processing occurs preattentively (i.e., the total content of the visual 
buffer is processed, not just the contents of the AW). The AW has a scope/resolution tradeoff, where it 
can see the whole image at low resolution, or specific details at high resolution. What follows is a step by 
step description of the algorithms used in all stages of processing in the VB. 
 Early perceptual processing. In the case of perceiving an image, the first processing step of the 
VB consists of separating the figure from ground in the AW. The procedure is as follows: 

1) Find peak luminances. Looking at the histogram of the pixel counts for each luminance level 
of a black and white version of the image, separate out the peak values from the other local 
maxima. The pixel counts at the local extrema are multiplied by the distance from the nearest 
equal pixel counts in the histogram (or half the number of luminance levels in the case of 
global extrema). The idea is not only to find the highest peaks, but to find locally high peaks 
even if they are not very high relative to the global maximum. Peak luminances are those that 
are above average on the measure: pixel count * distance. 

2) Find cutoff luminance level: Next the algorithm looks for the largest distance between the 
peaks. It assumes that this largest separation is between the “black” and “non black” areas. 
The cutoff point is determined to be the trough (i.e., local minimum) immediately following 
the lower luminance peak bordering the largest interpeak distance just found. 

3) Figure ground determination: Takes the cutoff value determined in the previous step and sets 
all “black” areas (i.e., luminance less than cutoff) as ground and all “non-black” areas as 
figure. 

4) Fill in and touch up: at this point, the object may still have “black” areas inside white areas; 
the fill-in process looks at all areas that are walled in on at least M (max 4, parameter set to 3) 
sides by N-thick (parameter set to 5 pixels) white pixels and counts these as the final figure 
areas of the image. 

 Using the resulting figure, the following image descriptions are calculations for output to SPPS: 
center and spread. The algorithms for each measure follow below: 
 Center. All points (pixels) in the image are assigned a probability of being the center based on 
what proportion of the total figure they are to the right of and below in the x and y directions. The most 
likely center is to the right of and below exactly half of the figure. The rest of the points are calculated by 
the (normalized) distance between their proportions and the ideal proportions. These conditional 
probabilities (i.e., probability of each point being the center based on the image input) are then multiplied 
by the prior probabilities, which are sent as feedback to the VB from the SPPS. By default the prior 
probabilities are equal for each point. If the SPPS sends a feedback center point to the VB, then the priors 
are calculated from a two-dimensional Gaussian function centered on this feedback point with a standard 
deviation also provided by the SPPS. This produces an exponential drop-off in priors probabilities for 
points in the image as they deviate from the expected center. The highest probability point (priors * 
conditional probabilities) is returned to the SPPS. 
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Spread. The spread calculation takes the previously determined center and find the points in the 
figure that are horizontally and vertically most distant from the center. These four points: top, bottom, 
left, and right are sent to the SPPS as the spread of the image. 

The VB also sends the location and size of the AW to the SPPS. 
The VB then continues with the analysis of the contents of the AW. First, if necessary, it moves 

the AW’s location and adjusts its size as specified by the input from the AS (described below). The VB 
extracts the high curvature points from the figure resulting in a compact image shape description 
requiring only a few points. The following computations are used in this process: 

1) Determine figure outline: the outline of the figure is calculated as only those pixels in the 
image which border a non-figure (“black) pixel on any one of four sides. 

2) Calculate curvature: The curvature, k, at any given pixel in the figure’s outline is calculated 
by multiplying the turning angle by the distance between points used to determine the turning 
angle (this distance is a parameter set to 5 pixels; Feldman & Singh, 2005; Ghosh & Petkov, 
2006).  

3) Calculate prior probabilities: If the OPPS has not sent feedback about the likely high 
curvature points, all points on the outline are assigned equal prior probability of being a high 
curvature point. If the OPPS has provided candidate points, then all points are assigned an 
equal share of 1.0-confidence probability, and those points on the outline nearest those 
provided by the OPPS gain an additional probability equal to confidence/N, where N is the 
number of these points (a parameter in the model set to 12). 

4) Finding high curvature points: To force the high curvature points to be more distributed 
around the outline of the model, their distance from one another is also a factor in the 
decision. The process is iterative and starts by selecting the most likely high curvature point 
(as determined by priors * conditional probabilities). After each new point is selected (up to a 
total of N), the distance between all the remaining points in the outline and the closest point 
already selected to be a high curvature point is calculated. The original likelihoods (priors * 
conditional probabilities) is weighted by this distance measure. 

The center value calculated earlier is subtracted from the set of high curvature points making their 
coordinates all relative to the center (i.e., position invariant). They are then sent to the OPPS for further 
calculation. 

Noise. Gaussian noise is added to both the internal calculation in the VB, reflecting noise in both 
the input, early visual processing, and in VB processing. Specifically, noise is added to the internal 
calculations of center and curvature, and to the outputs sent to the SPPS and OPPS. 
 

Object Properties Processing System 
 

The role of the OPPS is to recognize the object in the figure extracted by the VB. The best candidate 
object models are sent to AM. The OPPS also has feedback connections to the VB, in order to help it with 
processing the figure outline. 

Input 
From VB: 
• Set of high curvature points 
From AM: 
• Prior distribution across object models 
From IS: 
• Sampling rate 
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Output 
To AM: 
• Confidences for all object models 
To VB: 
• High curvature points of object model with highest confidence 
• The confidence level for this object model 
 

Representation and processing 
The object properties processing system (OPPS) stores prototypical object models (i.e., objects 

viewed from a specific viewing angle). There are object models for whole objects and for parts of objects 
(see discussion of AM and the IS below). While many kinds of information about object models are 
stored in the analogous system in the brain, including color, texture, and shape, we have simplified the 
model by focusing only on shape. Each object model is two N-dimensional vectors whose values 
represent the distances and angles (i.e., polar coordinates) for each of N center relative high curvature 
points on the outline of that object model. In reflexive top-down processing, these sets of high curvature 
points, along with the confidence for the most likely object model, are sent to the VB for processing (for 
both perception and imagery). 

First the OPPS converts the input from the VB into polar coordinates and orders both vectors 
based on the magnitude of the distance. It also scales the resulting distance vectors by the largest vector, 
to overcome effects of changes in size of the original image. The main processing task in the OPPS is to 
match these input vectors to stored representations in order to find the most likely object model. It does 
this by following this algorithm: 

Matching to stored descriptions. 
1) Each time-step sample from the VB of the distances and angles of the high curvature points 

will produce two 12-dimensional vectors. After the second sample, these vectors will be 
averaged with the previously sampled vectors to produce the sample mean (I). 

2) Two standard errors of the mean (SEM) will be calculated from the standard deviations for 
each vector. These will be σd and σa for the SEMs of the distances and angles. These SEMs 
are assumed to be unequal. 

3) We ultimately wish to compute the following Bayes equation for each stored object structural 
description, or object model (OM): 
 

∑
=

=

∗

∗
= nj

j
jj

ii
i

ObjIPOMP

OMIPOMP
IOMP

0
)|()(

)|()(
)|(        (1) 

 
where n is the number of total stored object descriptions. P(I | OMi) is based on the distance 
between the stored object model and the mean of the input vector samples (computed using 
simple Euclidean distance between the stored object model vectors for distances and angles 
and the standard errors of the vector components, i.e., the 2 SEMs calculated above). 
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4) The exact equation for P(I | OMi) uses the multivariate elliptical form of the Gaussian 
function (since the input is a multidimensional vector and the SEMs are not equal). For 
simplicity, it is assumed that the covariance between these two sets of inputs is 0: 
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In the above equation (2), the distance between the sample input mean (I) and the object 
model is calculated for each component, and is divided by the SEM of that component. The 
subscripts used for the SEMs are also used for the components of the input and object model 
vectors. 
 
The denominator of the above equation is a constant k: 
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that does not vary across the different object models, so it will cancel out in the calculation of 
the Bayes equation (with one exception, see step 5 below). Removing it, produces the 
simplified equation 3, which is used in computations: 
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5) To deal with situations where insufficient information is available to make a good 
classification, we introduced a convergence factor, OMx, such that P(I, OMx) is some small 
constant (currently set to 1). While P(OMx, I) is calculated using equation 1 above and is 
included in the sum of all object models, it is not an object model. If P(OMx, I) is higher than 
the likelihood for all object models, then this means that the system has not converged on a 
good match and will continue calculations. Thus, this convergence factor keeps the model 
from settling quickly on a bad match just because it is not as bad as all the other matches. 

 
6) P(OMi) is the prior probability, which by default will be equal for all object models, except 

for the convergence factor (where P(OMx) is a parameter in the model currently set to 10-3). 
However, the underlying brain system has probably weighted these by frequency of 
occurrence (e.g., non-canonical views would be far less frequent). Furthermore, these prior 
probabilities can also be set by input from associative memory (AM) to reflect top-down 
processing (similar to changing β in signal detection theory). 

 
Shape classification. Using a similar classification process, but with uniform priors (this 

information is assumed to be calculated on the fly without the benefit of pre-stored knowledge in AM), 
OPPS will classify the general 2D shape of the object to a simple geometric form (e.g., circle, square, 
triangle, etc.; see tasks 6 and 7 below). 

Reflexive top-down processing. After a few samples (parameters) have been taken, the high 
curvature points of the most likely object model are sent back to the VB to replace its internal 
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calculations. This step is designed to speed up convergence on the proper object model. These points are 
first converted from their polar coordinates back to Cartesian coordinates. 

Sampling rate. The information shunting system (IS) may also send feedback to the OPPS telling 
it to take more samples from the VB per time step. By default, the rate is one sample per time step and 
increasing it would theoretically require more resources, so the IS would only do so if the identification 
process was not converging on schedule. Changing this sampling rate should make the system more 
sensitive (similar to changing D’ in signal detection theory). 

Noise. Gaussian noise is added to the OPPS output to AM and the curve points it sends as 
feedback to the VB. This noise simulates analog noise in inter-processing subsystem communications. 

 
Spatial Properties Processing System 

 
The SPPS keeps track of the object map of the world. This is a representation of the locations of 

all known objects in the vicinity. The size of the object map is thus much larger than the visual field that 
the VB takes in. 

Input 
From VB: 
• Center of figure location 
• Spread of figure 
• Location of AW 
• Size of AW 
From AM: 
• Most likely location of center of current object 
• Standard deviation of its location 
From IS: 
• Sampling rate 

Output 
To VB: 
• Center of object in VB coordinates 
To AM: 
• Center of object in object map coordinates 

 
Representation and processing 

The SPPS keeps track of all the objects surrounding the individual. Their locations are stored in 
the object map. While it seems that the brain stores these locations in polar coordinates relative to the 
individual’s location in space, and they are updated with the individual’s movement, we have simplified 
this by using Cartesian coordinates (especially since we do not model self-motion). Furthermore we have 
simplified the three-dimensional aspect of these representations into only two dimensions, since that is all 
that is necessary for our tasks. 

In the brain, the spatial properties processing system would also keep track of the VB’s position 
relative to the object map, but we do not model this processing, since our VB model does not move while 
performing our tasks. 

The SPPS calculates the center based on the inputs it gets from both the VB and AM. It keeps 
samples of the location of the center and spread points from VB while using the input from AM as the 
priors. This information is combined using the following equations: 
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where x is the sample mean, s2 is the sample variance, and n is the number of samples, while μ is 

the prior mean and σ is the prior variance. This process is repeated for the means of the x and y 
coordinates for the center and spread points. This assumes a Gaussian distribution and independence 
between the coordinates. Furthermore, we assume equal variance among the five points and pool our 
sample of their variance (for both x and y coordinates) into a single number. We furthermore use this 
sample estimate as an approximation of the population variance (considering the latter known instead of 
estimated). 

The above process returns a posterior estimate of both the mean and variance of the center and 
spread. Using these distribution numbers we can complete several estimates of the location of the object 
and its overall aspect (see tasks 2-5 below). 

Sampling Rate. IS can increase the sampling rate for the SPPS if the center is not being 
converged upon quickly enough. This process directly parallels the sampling rate increase that IS can 
initiate in the OPPS. 

Noise. Gaussian noise is added to the output of the system to both AM and the VB. 
 

Associative Memory 
 

Associative memory (AM) stores information about objects and scenes, including their different 
views and details. In perception, AM takes as input likely object model candidates and calculates the 
likeliest object supported by such evidence. It also helps resolve processing of object models by sending 
new priors to the OPPS. AM also receives information about object locations from the SPPS and binds 
this information to the identity information that it computes from the OPPS input. 

Input 
From OPPS: 
• Confidences for all object models 
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From SPPS: 
• Center of currently viewed object 
From IS: 
• Requests for information about object details 
• Priors across objects 

Output 
To IS: 
• Most likely object and its viewing angle 
• Confidence for above object 
• Center of current object 
• Standard deviation of its location 
• Diagnostic feature of the object (i.e., a detailed part) 
• Location of the diagnostic feature 
To OPPS: 
• Prior distribution across object models 
To SPPS: 
• Center of current object 
• Standard deviation of its location 

 
Representation and processing 

Object Identification. While human long term memory has many functions that bind together all 
known information about an object, the processing subsystem in our model implements a subset of these 
functions. The primary function of AM in our model is to identify objects based on input from the OPPS 
about object models (object/view combination). 

At each time slice, the input coming from the OPPS is a vector of the recognition confidences 
across the object. Since several object models may all represent the same object, these confidences are 
pooled into their respective objects to produce a vector of confidences across all objects. For example, 
consider that object models 1-3 are all different views of a single object. Their respective confidences are: 
0.1, 0.2, and 0.5. The confidence value for the underlying object would be 0.8 and similar calculations 
would be conducted for the other object model confidences. These resulting object vectors are stored for 
each time slice. Averages and SEMs are calculated from these stored sample object vectors. 
 Ultimately, likelihoods of each object, P(Oi|I) are calculated by the following Bayes equation: 
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where n is the total number of objects. The first component P(Oi) starts off being equal for all stored 
objects, except for the convergence factor, whose initial probability is a parameter (currently P(Ox) = 10-

3). AM can change these prior probabilities based on task expectations and input from the IS. 
P(I|Oi) is calculated using the multivariate circular Gaussian function: 
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where Di is the Euclidean distance between the average of the stored sample object vectors and the ideal 
input vector, with 1 in the position for object i and 0 for all other objects, and σ refers to the SEM of the 
stored sample object vectors. 

As the SEM of the stored sample object vectors decreases (i.e., as more of them are collected), the 
confidence for a single object should eventually reach cutoff for identification (a parameter set to 0.95). 
While the convergence factor is higher than all other object likelihoods (it may even be higher than 
cutoff), it is not allowed to be selected and the system will continue processing. The most likely object, its 
viewing angle, confidence, and a single diagnostic feature for the object are sent to the IS. 

Center. AM also keeps track of the location of the center of the object and its variance, 
information that it receives from the SPPS. It keeps samples of the x-y coordinates and keeps track of 
their variance. This information is bound to the current identity of the object so it is here in AM that the 
what and where information for objects is kept together. 

Reflexive top-down processing. The identification and recognition processes occur 
simultaneously. Information about objects in AM may be useful in recognizing object models in the 
OPPS. To this end, there is a reflexive feedback loop from AM to the OPPS. AM uses the confidences 
that it calculates for each of the objects to determine new priors for the object models, which it sends to 
the OPPS. The confidence for each object is split evenly among its corresponding object models, thus 
producing the new prior probabilities for all the object models. 

AM also can send back priors to change the way that the SPPS looks for objects. This is most 
evident when AM loads scene information into the OPPS and SPPS by manipulating their priors. 
However, even in the perception process, AM still sends the current stored location back to SPPS as 
feedback. 

Object parts. Included in the object representation is a specification of a single detail (a 
simplification of the many parts of objects that the brain keeps track of) and its location relative to the 
object center. The object parts are also stored as their own objects and can also be recognized. 

 
Information Shunting System 

 
The Information Shunting system (IS) is the logic controller of the whole model. It monitors 

processing to make sure that it is progressing to convergence; the IS is also responsible for initiating and 
resolving strategic top-down processing if the lower-level systems cannot resolve location and 
identification information by themselves. Finally, it is responsible for initiating imagery in the model by 
telling AM to load a particular scene. 

Input 
From AM: 
• Most likely object and its viewing angle 
• Confidence for above object 
• Center of current object 
• Standard deviation of its location 
• Diagnostic feature of the object (i.e., a detailed part) 
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• Location of the diagnostic feature 

Output 
To AS: 
• Center of location to attend to 
• Size of location to attend to 
To AM: 
• Request to load a scene 
To OPPS: 
• Sampling rate 
 
To SPPS: 
• Sampling rate 

 
Representation and processing 

In the simplest case, where AM and the OPPS can identify which object is being viewed and the 
SPPS can locate it correctly, the IS simply passes this information on to other systems. This system 
becomes much more important when problems arise with the perception, and particularly identification, 
of the correct object. This system is also crucial for initiating imagery. 
  Strategic top-down processing. After a certain number of time steps (minimum 3), information 
reaches the IS from AM. The IS monitors the confidence for the most likely object for a certain number of 
time steps (parameter in the system). If during this time, the object reaches criterion in AM and is 
selected, the IS does nothing. Otherwise, the IS checks to see whether the confidence is increasing. If this 
is the case, then all the IS does is send a signal to the OPPS and/or the SPPS to increase their sampling 
rate. 

However, if there is a problem with converging on the correct object, then the IS invokes a check 
for the diagnostic parts of the most likely objects. This process consists of the following steps: 

1) Query AM for part information for the most likely object 
2) Send the likely coordinates of this part to the AS to shift attention to the part 
3) Reset AM and the OPPS for recognizing and retrieving the object part 
4) Update AM priors to reflect looking at parts, not whole objects 
5) Monitor the success or failure of identifying the proper part, if process fails to converge in 

certain number of time steps then return to the SPPS the most likely object and its lower than 
threshold confidence (which will result in a “Don’t know” response). 

Reflexive top-down processing. The above process is strategy dependent and time/resource 
intensive. The IS also reflexively sends back information to AM. This includes the priors across objects 
and the criterion for selection. Priors would change based on task and/or scene knowledge. These types of 
knowledge are not currently modeled beyond having the IS send new object priors to AM to help it more 
quickly identify object parts in strategic top-down processing (step 4 above). 

 
Attention Shifting System 

 
The attention shifting system (AS) relays changes to the size and/or position of the attention 

window (AW) to the VB. It receives this input from the IS.  

Input 
From IS: 
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• Center of location to attend to 
• Size of location to attend to 

Output 
To VB: 
• Center of AW 
• Size of AW 

 
Representation and processing 

The AS keeps track of the current center and size of the AW in the VB, both in absolute 
coordinates and in terms of internal coordinates of the VB. When directed it can change the location of 
the AW by sending the new center and size information to the VB for the next time step. 

The AS also keeps track of the current location of the visual field (i.e., the VB) in the object map, 
and thus works on the same absolute coordinate system as the SPPS, not just the limited coordinates of 
the VB. Though not implemented in our model, the AS could initiate eye movements, including those that 
move beyond the current fixation of the VB. 

Noise. Gaussian noise is added to the output of the AS with regards to the location and size of the 
AW. 

 
3.2 Significant changes to technical approach. 
 N/A 

 
3.3 Progress against planned objectives. 
  We have achieved most of our goals. The remaining major goal (if more funding were secured) is 
to expand the model in order to process a greater range of stimuli and to accomplish a greater range of 
tasks. 

 
3.4 Technical accomplishments. 
  The model was designed to perform five perception and imagery based tasks. All perception and 
imagery tasks are analogous. We used a set of photographs of six real objects to create our stimuli: three 
toy cars and three toy animals from the Amsterdam library of object images (Geusebroek, Burghouts, & 
Smeulders, 2005). Each object had three photographs taken from three different views (we arbitrarily 
picked viewing angles of 0, 75, and 150 degrees), making for a total of 18 images (768x576 pixels, color 
PNG files). Each of these images was then placed in four locations of a larger image (1200x900 pixels) 
over a black background. This produced a total of 72 scenes used in our experiments. What follows is a 
detailed description of the tasks that the model can perform. 

1. Identification (perception only; object task): this is the most basic task where the model must 
send back the most likely object in AM when it reaches a certain confidence level or after a 
certain number of time steps, whichever comes first. This task is similar to having subjects 
name the picture out loud (though we do not model the word production aspect of this 
process). In the case of perception the experiment sends the test scenes one by one to the VB 
of the model which starts a cascade of bottom-up processing, while in the case of imagery the 
scene number is sent to the IS system of the model, which then loads the scene from AM in a 
cascade of feedback processing (see model description above). It is clear that this analogous 
imagery task is trivially simple, since the system knows already which objects are in the 
requested scene, since it has “memorized” the scenes. However, we include this task to see 
how it is affected by added noise to the system, such as in the case of brain damage. 
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2. Low-resolution aspect (perception and imagery; spatial task): in this task the model decides 
whether the overall shape of the object is wider than it is tall, or vice-versa, or about the 
same. The calculation is performed in the SPPS and is fairly easy to do in the case of 
perception, but more difficult in the case of imagery. 

3. High-resolution aspect (perception and imagery; object task): similarly to the previous task, 
the model has to decide whether the diagnostic detail is wider than it is tall, vice-versa, or 
about the same. This task requires a strategic intervention from the IS to refocus the AW on 
the diagnostic detail, before the SPPS can compute the necessary width to height comparison. 
In perception, this process requires the additional step of identifying the object as a whole 
before AM can retrieve the appropriate diagnostic detail and its location. 

4. Low-resolution object location (perception and imagery; spatial task): in this case the model 
has to identify what quadrant the object occupies most (e.g., upper-left, bottom-right, etc.). 
This task does not require a high-resolution (i.e., low standard error) knowledge of the 
location of the center. 

5. High-resolution object location (perception and imagery; spatial task): similarly to the 
previous task, the model now has to decide where the center of the object is more exactly. 
This task is similar to having participants point to the center of an object (both in imagery and 
perception). 

6. Low-resolution shape matching (perception and imagery; object task): this task, performed by 
OPPS, is similar to object recognition, but instead of finding the matching object model, the 
OPPS compares the overall shape of the object to a set of polygons. This is similar to having 
the model answer such questions as “what is the shape of a ball?” 

7. High-resolution shape matching (perception and imagery; object task): this is the same task as 
above with the exception that an object part instead of a whole object is matched to a set of 
polygons. 

 
We ran three preliminary experiments looking at 1) how noise at each level of the system affects 

performance on the different tasks, 2) whether the top-down feedback connections enhance processing at 
earlier stages in perception, and 3) how different damage settings affected performance on the different 
tasks. In the first preliminary experiment we looked at each individual noise level in order to determine 
minimal (normal participants), moderate, and severe levels of noise. The dependent measures were both 
accuracy across scenes and average number of time slices for correct results. In the second preliminary 
experiment we looked at whether our model shows positive effects of strategic and reflexive top-down 
processing by individually severing the top-down connections and looking at performance across scenes 
on just the perception tasks. In our third preliminary experiment we looked at all pairwise combinations 
of damage settings in the model across tasks and their effects on the different tasks in our battery. 
Performance was measured as both accuracy and average time per correct answer. We were looking to 
find different patterns of dissociation based on the location of the damage (increased noise). We are 
beginning an article for publication. Since we have been able to conduct only preliminary experiments, 
we are seeking more funding in order to run more extensive and rigorous tests of the model, and to 
expand this initial implementation. 

4. Results and Discussion II: Computational Modeling of Early and Intermediate Vision 
 
4.1 BD model specifications.  
 Finally, we have been collaborating with Prof. Bruce Draper and his lab, trying to develop a 
model of early and intermediate vision that would, essentially, provide a more detailed implementation of 
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some input components postulated by IMPER. The following section reports progress on this aspect of 
our overall project. This work ended up also exploring some alternative ways to implement aspects of the 
model discussed earlier, and it would be of great interest to compare directly the efficacy of the different 
approaches.  

As noted earlier, the gross regional functional anatomy of the human visual system is well-
known. The early vision system includes the retina, the dorsal lateral geniculate nucleus of the thalamus 
(LGNd), the superior colliculus of the midbrain, and cortical regions V1 through V4. Beyond early vision 
the system splits into the ventral and dorsal streams. The ventral stream includes the lateral occipital 
complex (LOC) and posterior inferotemporal cortex (pIT). It processes object properties for tasks such as 
object recognition and landmark-based navigation. The dorsal stream includes region V3a, the 
mediotemporal cortex (MT), and structures in the posterior parietal cortex. It processes spatial and 
movement properties for tasks such as tracking, ego-motion estimation, and hand-eye coordination. The 
two streams converge on associative memories in the anterior inferior temporal cortex (aIT), the angular 
gyrus and area 19. The associative memories in turn communicate with the dorsolateral prefrontal cortex, 
which closes the loop by providing feedback to LGNd and superior colliculus through pathways that 
include the frontal eye field. For accessible overviews of the anatomy of human vision, see Milner & 
Goodale (1995), Kosslyn (1994), or Palmer (1999). 

Regional functional anatomy does not by itself define a software architecture, however. 
Architectures specify both components and interfaces. One of the goals of this project was to define an 
architecture with interfaces based on a literature review of behavioral studies, lesion studies, brain 
imaging techniques and electro-physical recordings, and to use this architecture to explore computational 
models of top-down vision. The architecture is limited to the task of object recognition. It does not 
consider visual tasks such as tracking or ego-motion estimation that are computed in the dorsal visual 
stream, allowing us to concentrate on the early vision system, the ventral stream, and associative 
memories. The result is a model of the inferotemporal cortex and its relation to associative memory, as 
well as refined models of early vision and the lateral occipital complex. 

 
A Biomimetic Software Architecture 

 
The software architecture below formalizes the major components of the human visual system 

and adds well-defined interfaces. Readers may already be familiar with rough functional characterizations 
of many of the modules. In particular, Figure 4 shows four modules outlined in black: the early visual 
system (attention and retinotopic processing), lateral occipital complex (feature extraction), posterior 
inferotemporal cortex (object recognition) and associative memories (object identification). As discussed 
below, the most distinctive part of this architecture lies in the definition of the object recognition module, 
which models pIT, and its interface to the associative memories. Object recognition is defined as an 
unsupervised clustering task, not a supervised (or even unsupervised) labeling problem. Labeling and 
other forms of cross-modal associations are modeled in the associative memories, which operate over 
clusters, not samples. 
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Figure 4. The biomimetic architecture. LOC refers to the lateral occipital complex, pIT 
to the posterior inferotemporal cortex, and Assoc Mem to associative memories. Arrows 
in gray (representing top-down processing) were implemented for the first time as part of 
this work. 

 
Figure 4 shows arrows in light gray which are part of top-down object recognition and which 

were added to the model as part of this work. Some of these top-down connections pass through the 
dorsolateral prefrontal cortex and frontal eye field. Without these connections, the architecture models 
object recognition in the absence of context, when in fact, most recognition relies on predictions from the 
ongoing context. 

What follows is a description of the basis in the literature for the computational model we worked 
with. Note that, in order to build a working computational model, we have to simplify the architecture, 
leaving out some components (e.g., almost the complete dorsal stream), and making assumptions about 
others that are consistent with the biological literature but not necessarily dictated by it. 

 
 
 

Early vision 
Architectural description. The early vision system is modeled as a spatial selective attention 

function. It consumes raw images and top-down predictions, and produces image windows defined in 
terms of image positions and scales. The function should optimize stability in the sense that if the same 
object appears in two images at different positions and scales but from the same 3D viewpoint (and under 
similar illumination), the system should center attention windows at the same positions and relative sizes 
on the object.  

Biological justification. The human early vision system is perhaps the most thoroughly studied 
system in neuroanatomy. After decades of study, we have detailed models of ganglion cell responses in 
the retina and the parvocellular, magnocellular and interlaminar layers of LGNd. Types of known 
orientation-selective cells in V1 include simple cells, complex cells, end-stopped cells, and grating cells, 
to name just a few. Other cells are sensitive to colors, disparities, or motions.  

For all the discussion of edge sensitivity and feature maps, however, the products of early vision 
are spatial attention windows. The early vision system is retinotopic, which is to say that every cell has a 
fixed receptive field in the retina (although they also receive efferent inputs), and neighboring cells 
generally have neighboring receptive fields. Features in the early vision system are therefore kept in a 2D 
spatial format. Feature maps in the early vision system also cover the entire retinal image, creating 
essentially a series of image buffers. Moreover, the early vision system is almost the only part of the brain 
with this organization. As a result, it is a valuable resource: mental imagery recruits image buffers top-
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down to reconstitute images from memory (Kosslyn, et al. 1999), and tactile input triggers V1 when 
subjects read Braille (Burton, et al. 2001).  

Why would the brain compute any feature across the entire retinal image, when downstream 
processing is restricted to spatial windows selected by early vision? After all, it requires far fewer neurons 
to compute features over attention windows in LOC and/or MT than to compute them across the entire 
image. If we assume that human vision is efficient, the only features computed in the early vision system 
should be those used to select attention windows. This is why we model early vision as a spatial attention 
engine. There is one caveat: some dorsal pathway tasks such as ego-motion estimation rely on extra-
attentional features which must be computed across the field of view. Motion features are also important 
for spatial attention, however, so the general rule still holds: all features computed in early vision are 
needed for attention. 

We should be careful to distinguish among types of attention, particularly overt from covert 
attention, and spatial attention from feature-based or object-based attention. Overt attention refers to the 
movement of the eyes and head to fixate attention on a particular point in 3D space. Overt attention 
appears to be driven largely top-down, by a pathway through the frontal eye fields to the superior 
colliculus. (Superior colliculus also integrates bottom-up data from early vision, particularly motion data.) 
Overt attention occurs before a retinal image is acquired, however. We model early vision as selecting 
covert attention windows in the retinal image. These windows may or may not be foveal, and we do not 
know the average dwell time of covert attention or whether it is sequential or coarsely parallel.  

We also distinguish spatial attention from feature-based or object-based attention. There is 
evidence that downstream visual processing may select data at the level of features or objects as well as 
spatial windows. This is not incompatible with spatial attention, but is not yet included in our model.  

Direct evidence that spatial attention selects windows in terms of position and scale comes from 
Grill-Specter, et al. (1999), who used repetition suppression effects in fMRI to show that the input to 
LOC from the early vision system was unchanged when the stimulus was translated or scaled within a 
factor of 2. Oddly, the same study showed that human spatial attention does not impart rotational 
invariance, despite evidence from computational systems such as scale invariant feature transform, SIFT 
(Lowe 2004) that attention windows can compensate for image rotations as well. 

Implementation of early vision. We implemented early vision as finding local maxima in multi-
scale difference of Gaussians, DoG responses. This approach was first proposed by Koch and Ullman 
(1985), and has been refined over the years to form the basis of both NVS (Itti and Koch, 2000) and SIFT 
(Lowe 2004). Our implementation is based on neuromorphic vision system, NVS, but was modified to 
select scales as well as positions and to be less sensitive to image translations and scales (Draper and 
Lionelle 2005).  

Whether DoG responses are a good biological model of bottom-up spatial attention in humans is 
debatable. Parkhurst, Law and Niebur (2002) and Ouerhani et al (2004) show better than random 
correspondence between DoG responses and human eye tracking data. Eye tracking, however, measures 
overt rather than covert attention, and Privetera and Stark (2000) show that almost any high-frequency 
feature has a better-than-random correspondence to eye tracking data. Recently, Kadir and Brady (2001) 
have proposed another bottom-up salience function based on local entropy. 

 
Feature extraction in LOC 

Architectural description. The lateral occipital complex is modeled as a feature extraction 
mechanism that converts spatial attention windows into feature vectors. The feature vectors are sparse and 
high-dimensional, and should capture the local geometric structure and to a lesser extent the color 
information in attention windows. The goal is to project the contents of attention windows into a high-
dimensional feature space such that structurally similar windows will cluster. 
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Biological justification. The term lateral occipital complex denotes a large cortical region that 
spatially connects parts of the early vision system to the inferotemporal cortex. Although it has been 
studied for years, its exact boundaries in people and monkeys remains open to debate, as does the 
question of whether it is a single functional unit, two units, or possibly more. A general discussion of 
LOC can be found in Grill-Spector, Kourtzi and Kanwisher (2001). 

Although the anatomy of LOC is unclear, its significance is not. A subject with bilateral lesions 
to LOC immediately developed visual form agnosia, a condition which left her unable to recognize even 
the simplest objects and shapes (James, et al. 2003). By measuring repetition suppression in fMRI, 
Kourtzi and Kanwisher showed that parts of LOC respond identically to an image of an object or its edge 
image (Kourtzi and Kanwisher 2000), even if its profile is interrupted (Kourtzi and Kanwisher 2001). 
Using a similar technique, Lerner et al (2002) showed that LOC responses are able to “fill in” gaps 
created by projecting bars over images.  

These studies provide converging evidence for a view of LOC as computing structural features of 
attention windows, even in the face of geometrically structured noise. More recently, Kourtzi et al (2005) 
have shown that LOC is involved with learning shape descriptions for later use, and that it becomes even 
more active if the shapes being learned are partially disguised by complex backgrounds, possibly because 
it has to work harder. A study by Altmann, Deubelius, and Kourtzi (2004) suggests that LOC combines 
edge information with motion and disparity data and/or top-down predictions. 

Confusing this picture somewhat is a study that suggests that at least part of LOC also responds to 
colors (Hadjikhani et al, 1998), although this may depend partly on the disputed boundaries of LOC. A 
study by Delorme et al (2000) suggests that feature vectors may include both structural and color 
information, but that the two are kept separate and that some subjects take advantage of color features 
while others do not. Also, the size of LOC and the fact that it becomes only diffusely active in fMRI 
studies of object recognition suggests that the feature vectors are high-dimensional but sparse. 

Implementation. We implement LOC as a collection of parametric voting spaces, in the style of a 
Hough transform. The studies above suggest that LOC aggregates structural information, and behavioral 
studies by Biederman (1987) suggest that collinearity, co-termination, symmetry, anti-symmetry and 
constant curvature are particularly important structural features. We therefore created parametric 
representations of collinearity (defined over edges), axes of symmetry and anti-symmetry (defined over 
edge pairs), and of centers of curvature and termination (also defined over edge pairs). Edges and edge 
pairs from attention windows vote in these spaces, and the vote tallies form feature vectors. A single color 
histogram is used as a color feature vector. The final feature space representation is the concatenation of 
its structural and color feature vectors. 

Although not used in this implementation, it should be noted that SIFT (Lowe 2004) uses 
parametric voting spaces as feature vectors, and that generalized Hough transforms (Ballard 1981) could 
be used to detect specific structures top-down. 

 
Object recognition in inferotemporal cortex 

Architectural description. The inferotemporal cortex is modeled as unsupervised clustering. It 
consumes feature vectors and produces view categories, which are groups of feature vectors that are 
similar in structure and color. View categories do not correspond to semantic object labels; semantic 
object classes may be divided across many view categories. Black cats, for example, do not look like 
calico cats, and the front view of cat doesn’t look like its side view. View categories are viewpoint and 
illumination dependent, and semantic object classes may be further divided because of differences among 
instances (e.g. black cats vs. calico). Also, view categories typically correspond to parts of objects, since 
attention windows do not presuppose image segmentation.  

Biological justification. The psychological literature makes a distinction between unimodal 
recognition and multi-modal identification. As defined by Kosslyn (1994), recognition occurs when input 
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matches a perceptual memory, creating a feeling of familiarity. Identification, on the other hand, occurs 
when input accesses representations in multi-modal memory. Thus we might visually recognize an object 
as being familiar before we identify it as a cat, at which point we know what it looks like, sounds like, 
feels like, etc.  

Recognition and identification can become disassociated in patients with brain damage. Farah 
(2004) summarizes a collection of patients with associative visual agnosia. These patients cannot 
recognize objects, even though they can accurately copy drawings and describe the features of an object, 
suggesting that the early vision system and lateral occipital cortex are intact. These patients also show no 
deficits in identifying objects by other modalities; their ability to identify objects from language, sound 
and touch is unimpaired. They therefore demonstrate behaviors that are consistent with damage to a visual 
recognition module while the multi-modal identification module remains intact. 

The opposite scenario is seen in patients with semantic dementia (2004). These patients retain 
basic recognition abilities in all of their senses, but loose the ability to form cross-modal associations, for 
example to associate visual percepts with auditory percepts or abstract concepts. The simultaneous loss of 
identification abilities across senses is consistent with a damaged identification system with intact sensory 
recognition modules. There are also cases of selective semantic dementia, in which patients are unable to 
identify specific classes of objects, for example living things. This is probably the result of damage to part 
but not all of the identification system. 

Evidence that the inferotemporal cortex learns highly specific view categories comes from several 
sources. An fMRI study by Haxby et al (1999) suggests that IT responds differently to views of standard 
and inverted faces, while a study by Troje and Kersten (1999) goes further: people are expert at 
recognizing other people’s faces head-on or in profile, but are only expert at recognizing themselves 
head-on, because that is how they see themselves in mirrors. Behavioral studies of face recognition 
suggest that we are faster and more accurate at recognizing faces illuminated from above than below 
(Bruce and Young 1998). Single-cell recordings from the inferotemporal cortices of monkeys suggest 
different responses to images of faces based on expression (Sugase, et al. 1999). Perhaps most tellingly, 
Tsunoda et al (2001) combined fMRI and single-cell recordings in macaques to probe IT responses to 
stimulus changes, for example removing part of a target or removing its color. Every significant change 
resulted in different cellular-level responses in IT. Tanaka et al (2003) showed that changes in orientation 
triggered different cells in macaque IT. 

The evidence for highly-specific and appearance-based view categories combined with the 
separation of recognition from identification suggests that IT should be modeled as unsupervised 
clustering, while associative memories combine collections of category views with training signals to 
create cross-model object categories. This contradicts some other recent biologically-inspired models (e.g. 
Serre, et al. 2005), which learn to map from stimuli to labels at the level of the lateral occipital complex. 

Implementation. We implement IT as a single layer of neurons trained by repetition suppression. 
The idea is that every neuron individually learns to divide feature space in two without dividing any 
densely populated portions of feature space (i.e. clusters). As a group, the neurons produce a binary code 
that identifies a view category. An alternative biologically-inspired unsupervised clustering model of IT 
has been proposed by Rodriguez, et al. (2004) and Granger (2006).  
 
4.2 Significant changes to technical approach. 
 N/A 
 
4.3 Progress against planned objectives. 

One of the key objectives for this part of the work was “an analysis of the problems to be solved 
in each of the major processing phases in the brain during visual object identification … focusing on 
specifying the type of information that is sent”. The architecture of the model we applied is based on the 
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literature of human vision, and implies both a set of processing phases for object recognition and 
constraints on the information sent between them. This architecture was described above. What follows is 
a summary of some of the major points learned with regard to this objective: 

1. The selective attention system needs to identify focus of attention (FOA) windows. In 
practice, these attention windows need to specify both the location and the scale of area of 
interest, and the scale should be accurate to within a third of an octave. Beyond that, 
matching is rarely successful. Perhaps most importantly, “microsaccades” – i.e. small 
adjustments to the location and scale of an attention window – are highly useful. We 
discovered that when an FOA is matched to a category in the ventral stream, the prototype of 
the category can be used to refine the location and scale of the attention window. This in turn 
allows a better window to be extracted and categorized, confirming (or occasionally refuting) 
the original hypothesis. 

2. Top-down predictions to the early vision system are, not surprisingly, very powerful. If the 
system knows what it is looking for, it can alter its salience function to detect that object. 
This both increases the detection rate and minimizes the errors in location and scale. 

3. Structural features (meaning, in our context, shape based features based on non-accidental 
properties) and color features (implemented in our model with color histograms) performed 
about equally well in the feature extraction component of our model. Combining them 
performed only marginally better than either feature type alone, however, suggesting that top-
down “signal” features (which we have not yet experimented with) may be very important. 

4. The first stages of matching determine familiarity, not object identity. Image patches (i.e. the 
contents of attention windows) are grouped by their features into categories of image patches 
that look alike. Matching at this scale produces a sense of familiarity; failing to match may 
trigger novelty responses in the amygdala and perirhinal cortex. It does not, however, rise to 
the level of “object recognition”. Instead, it allows the system to recognize that it has seen 
these surroundings before and that they are familiar. Grouping them into complex “objects” 
requires further stages. 

5. Anomaly detection, which we operationalize as the detection of familiar objects in unfamiliar 
combinations, can be implemented successfully at the current level. 

6. We tested three different implementations of grouping algorithms for familiarity. We tested 
the thalamocortical grouping algorithm of Granger against a neural-net repetition suppression 
algorithm and the traditional K-Means grouping algorithm. Somewhat to our surprise, 
Granger’s algorithm significantly outperformed the other two. (We can provide more detailed 
results if desired.) We have therefore adopted Granger’s algorithm as our standard grouping 
algorithm for this stage of processing. 

7. Grouping algorithms by their nature have to model all of feature space. We altered our model 
of memory to learn high-dimensional manifold models of each specific category (a.k.a. 
aspect). This allowed us to detect and correct grouping errors. It also produced a better top-
down signal to be fed back to the categorizer and to the selective attention mechanism. 

 
4.4 Technical accomplishments. 

As reported at the Bio Inspired Cognitive Architectures program (BICA) meeting in San 
Francisco, we applied the system to a sequence of 591 images of a toy artillery piece on a turntable; one 
of the images is shown in Figure 5. The system selected approximately 10 attention windows per image, 
converted the attention windows to parametric feature vectors and then clustered the resulting feature 
vectors into view categories. The average image windows for the eight most commonly occurring view 
categories are shown in Figure 6.  
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Figure 5. One of 591 images of a toy artillery piece on a turntable. 
The average rotation between images is a little less than 1.5°. 

 
 

In all eight cases, we can easily identify what part of the target or background the view category 
represents, and in all cases the categories are “pure” in the sense that every feature vector assigned to a 
category comes from the same target or background location. Different views of an object part generate 
different categories; for example, there are two view categories for wheels: one for nearly parallel 
projections, and another for wheels at more oblique angles (although the later was not one of eight shown 
in Figure 6). 

Not all of the view categories in Figure 6 are equally meaningful. The first category, in fact, 
corresponds to the end of the shelf in the background behind the target. This was the most common 
category, because it never changed viewpoint and was visible in almost all the images. We need the 
semantic reasoning capabilities of the dorsolateral prefrontal cortex to infer that this category is not 
interesting, and top-down control to suppress it from being attended to in the future.  
 
 

 
 

Figure 6. The average image windows for the eight most commonly occurring view categories. 
 

 
Also, although view categories correspond to particular points and viewpoints, not all images in 

which a specific view is visible get included in a category. For example, there are more side-views of 
wheels than were found and assigned to the 7th category in Figure 6. Often this occurs because the wheel 
was not attended to; sometimes it was assigned to its own singleton view category. These are errors, but 
we believe that top-down reasoning will correct most of them. For example, contexts that imply wheels 
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will generate top-down predictions that increase the frequency with which predicted view categories are 
found. 
 
5. Conclusions 

 
In this project we developed a taxonomy of top-down processes in vision, showed how it was 

embodied in our theory, and developed computational models that incorporate these distinctions. The first 
distinction we drew is between strategic versus reflexive top-down processes. Strategic top-down 
processes engage the information shunting subsystem in the frontal lobes and result in the modulation of 
processing in subsystems implemented in the ventral and dorsal streams. Examples of activities that 
engage this type of top-down processes are voluntary visual attention, working memory, and retrieval of 
visual information from long-term memory. In contrast, reflexive top-down processing is automatically 
engaged by bottom-up processing, and does not recruit the information shunting subsystem. An example 
of this type of top-down process is the modal completion of contours.  

In addition, we also proposed that each of these two general types of top-down processing has 
different modes of operation. One mode consists of modulating the interpretation of outputs from 
processes; such modulation affects the sensitivity of processing (which corresponds to changing d', in 
signal detection parlance) or affects the decision criterion (which corresponds to ß, in signal detection 
theory). Another mode consists of supplementing information that is present in a subsystem, such as via 
vector completion, which thereby can complete fragmentary patterns with stored information.  

Although these distinctions are consistent with the available findings, not much extant evidence 
directly bears on them. One reason for the dearth of evidence lies in many technical limitations, such as 
the difficulty of establishing the precise time course of neural information processing in humans. Another, 
perhaps more interesting reason, is that researchers heretofore have not been thinking about top-down 
processing from the present perspective. Only after researchers begin to consider distinctions of the sorts 
we have proposed are they likely to turn their attention to collecting relevant data. 

  
6. Deliverables 
 
•  Physical (printed) binder (Biologically-Inspired Cognitive Architecture of High Level Vision: 

Supporting References) containing references and abstracts of pertinent literature.  
• Electronic database of the references in the binder (EndNote 9 [see http://www.endnote.com/] 

libraries for each of the modules indexed in the binder, plus a “fundamental papers” library); this is 
on a CD labeled “ENLibs_BICA_Refs_Vision”. 

•  Annotated IMPER model software code (see Readme file on Kosslyn_IMPER CD for more 
information). 

  
 

http://www.endnote.com
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List of Main Symbols, Abbreviations, and Acronyms 
  
AM: associative memory 
AS: attention shifting system 
AW: attention window 
DoG: difference of Gaussians 
fMRI: functional magnetic resonance imaging 
FOA: focus of attention 
IMPER: IMagery and PERception model 
IS: information shunting system 
LGNd: dorsal lateral geniculate nucleus 
LOC: lateral occipital complex 
MT: mediotemporal cortex 
NVS: neuromorphic vision system 
OPPS: object properties processing system 
pIT: posterior inferotemporal cortex 
SIFT: scale invariant feature transform 
SPPS: spatial properties processing system 
VB: visual buffer 
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